Daily Forecasting Trend Jakarta Composite Index (JCI) Using Multivariate Long Short Term Memory

نویسندگان

چکیده

The need to be able predict stock price movements is one of the problems that difficult for investors solve.Forecasting serves as a signal buy and sell. Forecasting can provide us with reference in making investment decisions. This study aims daily trend JCI. datasets used this research are JCI, NASDAQ, NYSE range 21 years (01/01/2000 31/12/2021). features input opening prices NYSE. amount data 5211 lines. deep learning method multivariate LSTM. optimization model using Adam. There 4 LSTM models made loss metrics MSE MAE, 2 epochs 100, 300 epochs. results showed could (d+1) most optimum

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Forecasting Based on Augmented Long Short-Term Memory

In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...

متن کامل

Speech dereverberation using long short-term memory

Recently, neural networks have been used for not only phone recognition but also denoising and dereverberation. However, the conventional denoising deep autoencoder (DAE) based on the feed-forward structure is not capable of handling very long speech frames of reverberation. LSTM can be effectively trained to reduce the average error between the enhanced signal and the original clean signal by ...

متن کامل

Effect of Short- and Long-term Memory on Trend Significancy of Mean Annual Flow by Mann-Kendall Test

Climate variability and change is threatening water resources around the world. One hundred and fourtheen (114) stations from Reference Hydrometric Basin Network (RHBN) around Canada with at least 30 years continuous data (up to 2011) were selected to study the trend in mean annual runoff for different periods of 30 to 100 years in step 10 years by non-parametric Mann-Kendall test. Effect of sh...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Long Short-term Memory

Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of research publications

سال: 2022

ISSN: ['2708-3578']

DOI: https://doi.org/10.47119/ijrp1001081920223853